
How microRNAs work: microRNAs are single-stranded RNA molecules of between 21-23 nucleotides in length which are partially complementary to regions in multiple mRNAs. Once they bind to these mRNAs, the microRNAs either inhibit translation or completely degrade their target RNAs. A specific enzymatic machinery--comprised of the proteins Dicer and the RISC complex--is responsible for inhibiting mRNAs via microRNAs.
In essence, the power of microRNAs are that a single microRNA can regulate the expression of multiple genes working in parallel to achieve a similar biologic effect. This technology is of particular use to the pharmaceutical industry: one can envision targeting a particular microRNA which inhibit several pathways to prevent a disease process, such as atherosclerosis, renal fibrosis, or cyst formation to think of a few possibilities. The field is still very new. I wouldn't be surprised if a future Nobel Prize came out of this work. Three scientists (Drs. Ruvkun, Baulcombe, and Ambros) working on microRNAs recently won the 2008 Lasker Prize--considered by many to be the "precursor" prize to the Nobel.
No comments:
Post a Comment