
Over the past few days at the MDIBL "Origins of Renal Physiology" course, we have been conducting experiments with zebrafish glomerular filtration. To begin with, we exposed fish to puromycin, a drug known to directly cause podocyte injury (zebrafish are already known to have podocytes). Then, fish were injected with a fluorescently-labeled dextran with a molecular weight of 70kD. Over the next several days, we looked at the rate of disappearance of immunofluorescence, a marker for dextran clearance. Fish untreated with puromycin showed a relatively constant fluorescence--indicating that an intact filtration barrier does not allow 70kD molecules to pass through it. However, fish treated with puromycin showed a dramatic decrease in immunofluorescence--indicating that the podocyte damage induced by puromycin allowed the 70kD dextran to pass through the filtration barrier.
No comments:
Post a Comment